过点P(4,3)作直线l,直线l与x,y的正半轴分别交于A,B两点,O为原点,当|OA|+|OB|最小时,求直线l的方程.

问题描述:

过点P(4,3)作直线l,直线l与x,y的正半轴分别交于A,B两点,O为原点,当|OA|+|OB|最小时,求直线l的方程.

由题意可得:设直线的斜率为k,
因为直线l与x轴的正半轴,y轴的正半轴分别交于A、B两点,
所以得到k<0.
则直线l的方程为:y-3=k(x-4),整理可得:kx-y+3-4k=0,
令x=0,得y=3-4k,所以B(0,3-4k);
令y=0,得到x=4-

3
k
,所以A(4-
3
k
,0),
所以|OA|+|OB|=3-4k+4-
3
k
=7+(-4k)+
3
−k

因为k<0,则|OA|+|OB|=7+(-4k)+
3
−k
≥7+4
3

当且仅当-
3
k
=-4k,即k=±
3
2

因为k<0,所以k=-
3
2

所以直线l的方程为
3
x+2y-4
3
-6=0.