(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)

问题描述:

(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)

令x2+x3+...+xn-1=A
(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)
=(x1+A)(A+xn)-A(x1+A+xn)
=Ax1+x1xn+A^2+Axn-Ax1-A^2-Axn
=x1xn