复变函数的证明题设Z1,Z2,Z3,三点适合条件:Z1+Z2+Z3=0,IZ1I=IZ2I=IZ3I.证明Z1,Z2,Z3三点是内接于单位圆IZI=1,的一个正三角形的定点
问题描述:
复变函数的证明题
设Z1,Z2,Z3,三点适合条件:Z1+Z2+Z3=0,IZ1I=IZ2I=IZ3I.证明Z1,Z2,Z3三点是内接于单位圆IZI=1,的一个正三角形的定点
答
方法1
分别设Z=COS+isin
带入Z1+Z2+Z3=0得cos1+cos2=cos3,
sin1+sin2=sin3(虚部和实部分别为零),
(cos1+cos2)的平方+(sin1+sin2)的平方=cos3的平方+sin3的平方=1,把(cos1+cos2)的平方+(sin1+sin2)的平方展开,cos(1-2)=0.5,所以|1-2|=120°或240°,夹角相同。所以等边。
方法2
因为1=|Z3|平方=|Z1+Z2|平方=2+(Z1Z2+Z1Z2)
所以(Z1Z2+Z1Z2)=-1
所以|Z1-Z2|平方=2-(Z1Z2+Z1Z2)=3
而|Z1-Z2|正是边长。同理可得三条边等长。
Z1Z2+Z1Z2应该是Z1的共轭*Z2+Z1*Z2的共轭。
不会打。
答
用复数的向量表示,可知三个向量首尾相接组成一个三角形,三边长度相同,则这个三角形是正三角形。
复数Z1,Z2,Z3的模相等,但未知,只能知道这三点内接于某圆心为原点的圆,该圆未必是单位圆(半径=1)
答
很简单,但是有一点我认为你可能说的不对,那就是无法求出三点在一个单位圆上 由于|Z1|=|Z2|=|Z3| 令|Z1|=|Z2|=|Z3|=r 设Z1=r(cosα+isinα) Z2=r(cosβ+isinβ) Z3=r(cosγ+isinγ) 因为Z1+Z2+Z3=0 则 r(cosα+cosβ+...