观察下列算式: ①1×4-22=4-4=0=1-1 ②2×5-32=10-9=1=2-1 ③3×6-42=18-16=2=3-1 ④_ … (1)省去中间两个等号,第4个算式可写为_; (2)省去中间两个等号,第n个算式可写为_; (3)你

问题描述:

观察下列算式:
①1×4-22=4-4=0=1-1
②2×5-32=10-9=1=2-1
③3×6-42=18-16=2=3-1
④______

(1)省去中间两个等号,第4个算式可写为______;
(2)省去中间两个等号,第n个算式可写为______;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.

(1)①1×4-22=4-4=0=1-1,
②2×5-32=10-9=1=2-1,
③3×6-42=18-16=2=3-1,
④4×7-52=28-25=3=4-1,
所以,4×7-52=4-1;
(2)第n个算式为:n(n+3)-(n+1)2=n-1;
(3)n(n+3)-(n+1)2=n-1一定成立.
证明:n(n+3)-(n+1)2=n2+3n-(n2-2n+1)=n2+3n-n2-2n-1,
=n-1,
即n(n+3)-(n+1)2=n-1.
故答案为:(1)4×7-52=4-1;(2)n(n+3)-(n+1)2=n-1.