设椭圆x^2/45+y^2/20=1的两个焦点为F1,F2,P为椭圆上一点,且PF1垂直于PF2,则|PF1|-|PF2|=?
问题描述:
设椭圆x^2/45+y^2/20=1的两个焦点为F1,F2,P为椭圆上一点,且PF1垂直于PF2,则|PF1|-|PF2|=?
答
依题意:|PF1|^2+|PF2|^2=|F1F2|^2=4*(45-20)=100(|PF1|+|PF2|)^2=(2*√45)^2=180=|PF1|^2+|PF2|^2+2*|PF1|*|PF2|则 2*|PF1|*|PF2|=180-100=80所以 (|PF1|-|PF2|)^2=PF1|^2+|PF2|^2-2*|PF1|*|PF2|=100-80=20所...