对于函数f(x)=log1/2(ax^2-2x+4)(a属于R),若f(x)在(负无穷,3>上为增函数,求a的取值范围.log1/2(ax^2-2x+4),1/2为对数的底,(负无穷,3>,>表示中括号.
问题描述:
对于函数f(x)=log1/2(ax^2-2x+4)(a属于R),若f(x)在(负无穷,3>上为增函数,求a的取值范围.
log1/2(ax^2-2x+4),1/2为对数的底,
(负无穷,3>,>表示中括号.
答
令M=ax^2-2x+4,
f(x)=log1/2(ax^2-2x+4)
=p(M)=log1/2M,
p(M)在M∈(0,+∞)上单调递减,
f(x)在x∈(-∞,3]上单增,
说明ax^2-2x+4在x∈(-∞,3]上单减且ax^2-2x+4>0,
这样,
若a=0,
-2x+4在x∈(-∞,3]上单减但ax^2-2x+4>0不能恒成立,
因此a=0不合题意,
若a≠0,由x∈(-∞,3]时ax^2-2x+4>0,说明二次函数开口向上,
有a>0,
由x≤3时单减,有对称轴x=1/a≥3,
0为使x∈(-∞,3]时ax^2-2x+4>0恒成立,
只需x=3时ax^2-2x+4>0成立,
即9a-6+4>0,
a>2/9,
综上,2/9
答
根据题意分析如下:1.g(x)=ax^2-2x+4 开口向上,且在[-∞,3]区间大于0;2.由于log(1/2)x为减函数(底数小于1),所以g(x)在[-∞,3]区间也是减函数;3.g(x)在[-∞,3]区间不等于0;①g(x)在实数域恒大于0△=b^2-4ac=4-16...