设集合A={x|x²-3x+2=0}B={x|x²+2(a+1)x+(a²-5)=0

问题描述:

设集合A={x|x²-3x+2=0}B={x|x²+2(a+1)x+(a²-5)=0
1若A∩B={2},求实数a的值
2若A∪B=A,求实数a的取值范围

A={x|x²-3x+2=0}={1,2},B={x|x²+2(a+1)x+(a²-5)=0.1.A∩B={2},把x=2代入B的方程得4+4(a+1)+a^2-5=0,a^2+4a+3=0,a=-1,或-3.a=-1时B={x|x^2-4=0)={土2},满足题设;a=-3时B={x|x^2-4x+4=0)={2},满足题...