∫(L的换积分)(y-z)dx+(z-x)dy+(x-y)dz,L为x^2+y^2+z^2=1与(x-1)^2+(y-1)^2+(z-1)^2=4相交的正向曲线
问题描述:
∫(L的换积分)(y-z)dx+(z-x)dy+(x-y)dz,L为x^2+y^2+z^2=1与(x-1)^2+(y-1)^2+(z-1)^2=4相交的正向曲线
答
解一:斯托克斯公式
解二:将三维简化为二维,再用格林公式.