求定积分∫x[f(x)+f(-x)]dx,积分上限是a,积分下限是 -a答案似乎是0.让f(x)=x, sinx, cosx后的结果好像都是0.但是不知道怎么证明,要有过程.
问题描述:
求定积分∫x[f(x)+f(-x)]dx,积分上限是a,积分下限是 -a
答案似乎是0.让f(x)=x, sinx, cosx后的结果好像都是0.但是不知道怎么证明,要有过程.
答
积分上是变元
先拆分
∫x[f(x)+f(-x)]dx
=∫[-a,0]xf(x)dx+∫[0,a]xf(x)dx+∫[-a,0]xf(-x)dx+∫[0,a]xf(-x)dx
对于第三第四个进行变元y=-x,注意上下限也变
=∫[-a,0]xf(x)dx+∫[0,a]xf(x)dx+∫[a,0]-yf(y)(-dy)+∫[0,-a]-yf(y)(-dy)
=∫[-a,0]xf(x)dx+∫[0,a]xf(x)dx+∫[a,0]yf(y)dy+∫[0,-a]yf(y)dy
再另x=y
=∫[-a,0]xf(x)dx+∫[0,-a]xf(x)dx+∫[a,0]xf(x)dx+∫[0,a]xf(x)dx
上下限交换,多出个负号
=∫[-a,0]xf(x)dx-∫[-a,0]xf(x)dx+∫[a,0]xf(x)dx-∫[a,0]xf(x)dx
=0