一个关于x的正式能被x+3整除,并且除以x+2,x-3所得的余数分别是-4,6,求满足上述条件的最低次数的整式

问题描述:

一个关于x的正式能被x+3整除,并且除以x+2,x-3所得的余数分别是-4,6,求满足上述条件的最低次数的整式

因为除以x+3,x+2,x-3所得的余数分别是0,-4,6
设该整式是(x+3)(x+2)(x-3)Q(x) +ax^2+bx+c 这里的Q(x)是任意整数多项式,或者任意常数
那么使用多项式除法,计算出::
它除以x+3的余数 是c+ 3*(3a-b) = 0
它除以x+2的余数 是c+2*(2a-b) = -4
它除以x-3的余数 是c+3*(3a+b) = 6
解方程组得到 a=2,b=0,c=-12
所以满足的最低次数是3,整式是 (x+3)(x+2)(x-3)K +2x^2-12 这里的K是任意整数.