四个不同的球分别放到1 2 3 4四个盒子里,要求每个盒子放一个,球的编号与盒子的编号全不相同,共种方法?看到一道题:将编号为1、2、3、4、5、6的6个球分别放入编号为1、2、3、4、5、6的6个盒子里,每个盒子放1个球.请问,恰好有2个盒子编号与球编号一样的投放方法有多少种?解析:首先选出2个编号和球一样的盒子,有 =15种方法;剩余的4个再进行错位重排,有3×3=9种方法.因此一共有15×9=135种.可有个地方看不懂,剩余的4个 再进行错位重排,为什么有3×3=9种方法?是c62=15

问题描述:

四个不同的球分别放到1 2 3 4四个盒子里,要求每个盒子放一个,球的编号与盒子的编号全不相同,共种方法?
看到一道题:将编号为1、2、3、4、5、6的6个球分别放入编号为1、2、3、4、5、6的6个盒子里,每个盒子放1个球.请问,恰好有2个盒子编号与球编号一样的投放方法有多少种?解析:首先选出2个编号和球一样的盒子,有 =15种方法;剩余的4个再进行错位重排,有3×3=9种方法.因此一共有15×9=135种.
可有个地方看不懂,剩余的4个 再进行错位重排,为什么有3×3=9种方法?
是c62=15

第一步看得懂吧.
第二步.剩下4个球要放入,每个球都不能放入跟自己编号相同的盒子.
不妨设1,2,3,4号球和1,2,3,4号盒子.
第一步:1号球有3种方法,不妨设放到4号
第二步看2号,有2种方法.
如果放到1、 3,4球放到2,3 1种.
如果放到3 ,3,4球放到1,2 两种
所以一共是3种方法
总共就是3*3=9