多项式8x2-3x+5与3x3+2mx2-5x+7相加后不含x的二次项,则常数m的值等于______.

问题描述:

多项式8x2-3x+5与3x3+2mx2-5x+7相加后不含x的二次项,则常数m的值等于______.

∵多项式8x2-3x+5与3x3+2mx2-5x+7相加后不含x的二次项,
∴8x2+2mx2=(2m+8)x2
∴2m+8=0,
解得m=-4.
故答案为-4.
答案解析:先把两多项式的二次项相加,令x的二次项为0即可求出m的值.
考试点:整式的加减.


知识点:本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.