证明lim(n→∞)(3n^2+n)/(n^2+1)=3 急用,要用极限的定义ε-N证明~麻烦写出具体的步骤

问题描述:

证明lim(n→∞)(3n^2+n)/(n^2+1)=3 急用,
要用极限的定义ε-N证明~麻烦写出具体的步骤

lim(n→∞)(3n^2+n)/(n^2+1)
=lim(n→∞)n^2(3+1/n)/n^2(1+1/n^2)
=lim(n→∞)(3+1/n)/(1+1/n^2)
=3

上下同时除以n^2,化简得3/1。

推荐答案错误!它没有使用极限定义证明.证明:对任意ε>0,解不等式│(3n²+n)/(n²+1)-3│=│(n-3)/(n²+1)│0,总存在正整数N≥[1/ε].当n>N时,有│(3n²+n)/(n²+1)-3│∞)[(3n²+n)/(n...