已知一等差数列{an}共由于11项,a1=-5,所有各项的算术平均数为5,若从中抽去一项,余下各项的算术平均数为41.求{an}的通项公式2.求抽去的项

问题描述:

已知一等差数列{an}共由于11项,a1=-5,所有各项的算术平均数为5,若从中抽去一项,余下各项的算术平均数为4
1.求{an}的通项公式
2.求抽去的项

d=2 an=2n-7 55-40=15=2*11-7=a11

设第6项为a,公差为d,则a1+a2+a3+...+a11=11a,11a/11=5,所以a=5,a1=a-5d=-5,5-5d=-5,所以d=2,所以通项An=-5+(n-1)2=2n-7,设抽去第n项,则11a- An=55-An=10*4=40,所以An=15,15=2n-7,n=11,即抽去的是第11项....