求证:(3n+1)7n-1能被9整除 n属于自然数7后面的n为n次方

问题描述:

求证:(3n+1)7n-1能被9整除 n属于自然数
7后面的n为n次方

证明:对于任意自然数n (3n+1)*7^n-1能被9整除
数学归纳法
(1)当n=1时 (3*1+1)*7-1=27能被9整除
(2)假设当n=k时 (3k+1)*7^k-1能被9整除
则当n=k+1时 [3(k+1)+1]*7^(k+1)-1=[21k+28]*7^k-1
=(3k+1)*7^k-1+(18k+27)*7^k
=[(3k+1)*7^k-1]+9(2k+3)*7^k
括号中的代数式能被9整除 9(2k+3)*7^k能被9整除
所以当n=k+1时 [3(k+1)+1]*7^(k+1)-1能被9整除
综合(1)(2)可知 对于任意自然数n 有(3n+1)*7^n-1能被9整除