设f(x)=(x-1)(x-2)(x-3)...(x-10),则方程f(x)的导数等于零在(2,7)内有多少个实根?
问题描述:
设f(x)=(x-1)(x-2)(x-3)...(x-10),则方程f(x)的导数等于零在(2,7)内有多少个实根?
答
导数等于0即指f(x)在那个点上是一个极值,原问题就变是f(x)在(2,7)内有多少个极值
然后根据f(x)的10个零点可以看出,在(2,3)有一个极值,(3,4)有一个极值……
一共就有5个极值,也就是导数有这个范围内有5个实根