等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标.
问题描述:
等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标.
答
作AE⊥BC,DF⊥BC分别与E,F,则EF=AD=2,BE=CF=1,
直角△ABE中,∠B=45°,则其为等腰直角三角形,因而AE=BE=1,CE=3.
以BC所在的直线为x轴,由B向C的方向为正方向,AE所在的直线为y轴,由E向A的方向为正方向建立坐标系,
则A(0,1),B(-1,0),C(3,0),D(2,1).