----o----- ‖‖L‖‖‖‖→F如图,均匀直杆长为L,重为G,上端铰接与O点.(1)用水平恒力F拉杆下端,使它转到与竖直方向成60°角为止,求此过程中拉力所作的功.(2)用水平分力F的下端,使它缓缓抬起,到杆与竖直方向成60°角为止,求此过程中拉力所作的功.

问题描述:

----o-----


L‖



→F
如图,均匀直杆长为L,重为G,上端铰接与O点.
(1)用水平恒力F拉杆下端,使它转到与竖直方向成60°角为止,求此过程中拉力所作的功.
(2)用水平分力F的下端,使它缓缓抬起,到杆与竖直方向成60°角为止,求此过程中拉力所作的功.

1
W=F*(L*cos60°)--------功的定义
2
W=mg*(L-L*cos60°)--------“动能定理”,拉力做功,等于克服重力做的功。

(1)恒力做功,力与力方向的位移乘积
W=F*s=F*L*sin(60度)
(2)杆受力平衡,铰接处的力没有位移,不做功,F做功等于物体势能变化
W=delta(Eg)=G*delta(h)=G*(L/2-L/4)
初始重心在L/2,末时重心在L/4处