已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
问题描述:
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
答
那位大哥,学艺未精啊
菱形的特点是四条边相等,
AB=BF=FG=GA,
但是 ∠B=60,BE=1/2AB,
故 E点为BF的中点, BE=EF=FC=1/3BC
所以 1/2AB=1/3BC
故当 AB:BC=2:3 时
四边形ABFG是菱形
答
(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)当BC=32AB时,四边形ABFG是菱形...
答案解析:(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;
(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.
考试点:菱形的判定;直角三角形全等的判定;平行四边形的性质;平移的性质.
知识点:本题考查平移的基本性质是:
①平移不改变图形的形状和大小;
②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.