线性代数的特征根和特征向量的问题若λ0是k重根,则它对应的特征向量的个数能不能大于k?为什么?说漏了,是线性无关的特征向量的个数。不超过k是为什么?为什么a是k重特征根的话,R(A-aE)就大于等于n-k?
问题描述:
线性代数的特征根和特征向量的问题
若λ0是k重根,则它对应的特征向量的个数能不能大于k?为什么?
说漏了,是线性无关的特征向量的个数。
不超过k是为什么?
为什么a是k重特征根的话,R(A-aE)就大于等于n-k?
答
1、若λ0是k重根,则它对应的特征向量的个数能不能大于k?为什么?不能.证明:假设a是A的k重特征值,但它对应的线性无关的特征向量有k+1个,则(aE-A)x=0的基础解系有k+1个线性无关的解向量,即(aE-A)X1+(aE-A)X2+...+(aE-A...