一个梯形的高乘以它的上底、下底分别为17.8、15.4,求梯形的面积
问题描述:
一个梯形的高乘以它的上底、下底分别为17.8、15.4,求梯形的面积
答
梯形面积公式:(上底+下底)×高÷2
设高为h,上底为a,下底为b
因为 ah=17.8
bh=15.4
所以 S梯形=(a+b)h÷2
=(17.8+15.4)÷2
=16.6
答:梯形的面积为16.6。
答
16.6
答
梯形面积=(上底+下底)×高÷2
=(上底×高+下底×高)÷2
=(17.8+15.4)÷2
=33.2÷2
=16.6
答:梯形的面积是16.6
答
16.6
设高为h,上底为a,下底为b
ha=17.8
hb=15.4
S=h(a+b)/2
答
梯形面积:
(上底+下底)×高÷2
=(上底×高+下底×高)÷2
=(17.8+15.4)÷2
=16.6
答
设上底为a,下底为b,高为h.
根据已知条件a*h=17.8,b*h=15.4;
则面积S=1/2*(a+b)*h=(a*h+b*h)/2=16.6
答
梯形的面积公式:(上底+下底)x高/2
所以面积为:(17.8+15.4)/2=16.6