在三角形ABC中有一点P,PE⊥AB,PF⊥AC.连接PB、PC,则∠ABP=∠ACP.M是BC的中点,连接ME、MF.求证:ME=MF
问题描述:
在三角形ABC中有一点P,PE⊥AB,PF⊥AC.连接PB、PC,则∠ABP=∠ACP.M是BC的中点,连接ME、MF.求证:ME=MF
答
证明:连接ME、MF、BF、CE.因为PE垂直于AB,PF垂直于AC所以,角BEP=角CFP=90度因为角ABP=角ACP所以角BPE=角CPF延长BP至Q,交AC于Q.则,角BPE=角CPQ所以,角CPF=角CPQ所以,点F和点Q重合,即BF和BP重合,BF就是AC边上的高.同...