如图,过△ABC的顶点A作AE⊥BC,垂足为E.点D是射线AE上一动点(点D不与顶点A重合),连接DB、DC.已知BC=m,AD=n.(1)若动点D在BC的下方时(如图①),求S四边形ABDC的值(结果用含m、n的代数式表示);(2)若动点D在BC的上方时(如图②),(1)中结论是否仍成立?说明理由;(3)请你按以下要求在8×6的方格中(如图③,每一个小正方形的边长为1),设计一个轴对称图形.设计要求如下:对角线互相垂直且面积为6的格点四边形(4个顶点都在格点上).
问题描述:
如图,过△ABC的顶点A作AE⊥BC,垂足为E.点D是射线AE上一动点(点D不与顶点A重合),连接DB、DC.已知BC=m,AD=n.
(1)若动点D在BC的下方时(如图①),求S四边形ABDC的值(结果用含m、n的代数式表示);
(2)若动点D在BC的上方时(如图②),(1)中结论是否仍成立?说明理由;
(3)请你按以下要求在8×6的方格中(如图③,每一个小正方形的边长为1),设计一个轴对称图形.设计要求如下:对角线互相垂直且面积为6的格点四边形(4个顶点都在格点上).
答
(1)S四边形ABDC=S△ABC+S△BDC=12BC×AE+12BC×DE=12BC×(AE+DE)=12BC×AD=12mn;(2)成立;S四边形ABDC=S△ABC-S△BDC=12BC×AE-12BC×DE=12BC×(AE-DE)=12BC×AD=12mn;(3)可画一个对角线分别为3、4的四...
答案解析:(1)根据S四边形ABDC=S△ABC+S△BDC即可得出答案;
(2)根据S四边形ABDC=S△ABC-S△BDC即可得出答案;
(3)对角线互相垂直的四边形的面积等于对角线乘积的一半,再由轴对称的特点即可作出图形.
考试点:利用轴对称设计图案.
知识点:本题考查了不规则图形的面积及轴对称的特点,第(1)(2)问比较简单,将所求面积拆分即可,第三问答案不唯一,同学们可以灵活作答.