设A、B为同阶矩阵,求证R(A+B) =R(A,B) =R(A)+R(B)求证写错了,应该是:R(A+B)扫码下载作业帮搜索答疑一搜即得

问题描述:

设A、B为同阶矩阵,求证R(A+B) =R(A,B) =R(A)+R(B)
求证写错了,应该是:R(A+B)

扫码下载作业帮
搜索答疑一搜即得

A的列向量中选出一个极大无关组,B的列向量中选出一个极大无关组,显然矩阵(A,B)的列向量可以由这可以由上面的两个无关组的并线性表示,所以第二个不等式成立.
再证第一个不等号,(A,B)的列向量找到一个极大无关,那么A+B的列向量都可以由它表示,所以第一个不等号也成立.