有同样数目的乒乓球和羽毛球.每次取12个乒乓球和9个羽毛球,几次后只剩羽毛球9个.有几个乒乓球和羽毛球不用1元2次方程,也不用2元1次方程
问题描述:
有同样数目的乒乓球和羽毛球.每次取12个乒乓球和9个羽毛球,几次后只剩羽毛球9个.有几个乒乓球和羽毛球
不用1元2次方程,也不用2元1次方程
答
每次乒乓球比羽毛球多取3个,最后剩羽毛球9个
所以:9/3 = 3
知取了3次。
所以有12×3 = 36个乒乓球、羽毛球
答
最后的结果是乒乓球不剩,所以总数肯定是12的倍数.每次乒乓球比羽毛球多取3个,所以取3次就多取了9个,当此时乒乓球正好取完,那么羽毛球就剩下了9个.所以有12×3 = 36个乒乓球(羽毛球),要取3次.