如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)设(1)题中的抛物线上有一个动点P,当点P在抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

问题描述:

如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.

(1)求该抛物线的解析式;
(2)设(1)题中的抛物线上有一个动点P,当点P在抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;
(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

(1)∵抛物线y=x2+bx+c与x轴的两个交点分别为A(-1,0),B(3,0),

(-1)2-b+c=0
32+3b+c=0

解得
b=-2
c=-3

∴所求解析式为y=x2-2x-3.
(2)设点P的坐标为(x,y),
由题意:S△PAB=
1
2
×4|y|=8,
∴|y|=4,
∴y=±4.
当y=4时,x2-2x-3=4,
∴x1=2
2
+1,x2=-2
2
+1;
当y=-4时,x2-2x-3=-4,∴x=1,
∴满足条件的点P有3个,
即(2
2
+1,4),(-2
2
+1,4),(1,-4).
(3)在抛物线对称轴上存在点Q,使△QAC的周长最小.作业帮
∵AC长为定值,
∴要使△QAC的周长最小,只需QA+QC最小,
∵点A关于对称轴直线x=1的对称点是(3,0),
∴Q是直线BC与对称轴直线x=1的交点,
设过点B,C的直线的解析式y=kx-3,把B(3,0)代入,
∴3k-3=0,
∴k=1,
∴直线BC的解析式为y=x-3,
把x=1代入上式,
∴y=-2,
∴Q点坐标为(1,-2).
答案解析:(1)已知了抛物线过A、B两点,而抛物线的解析式中也只有两个待定系数,因此可将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,也就得出了二次函数的解析式.
(2)根据(1)中得出的抛物线的解析式,可求得A点的坐标,也就能得出AB的长.△PAB中,AB的长为定值,那么可根据△PAB的面积求出P到AB的距离,即P点纵坐标的绝对值,然后将其代入抛物线的解析式中(分正负两个值)即可求出P点的坐标.
(3)本题的关键是找出Q点的位置,已知了B与A点关于抛物线的对称轴对称,因此只需连接BC,直线BC与对称轴的交点即为Q点.可根据B、C两点的坐标先求出直线BC的解析式,然后联立抛物线对称轴的解析式即可求出Q点的坐标.
考试点:二次函数综合题.

知识点:本题主要考查了二次函数解析式的确定,图形面积的求法,函数图象的交点等知识;
(3)题中能正确的找出Q点的位置是解题的关键所在.