关于用描述法定义集合的意义若用描述法来定义一个集合A={x|p,k∈B},其中P是一个包含k的关于x的命题,B是一个说明k取值范围的集合,如p:x=2k+1,B=Z.那么这样定义的集合所包含的元素x,是使k取遍B中元素时每一个k确定的p为真的x都取呢,还是只使某个属于B的特定的k确定的p满足的x,并由此得到许多个依赖于k的A的可能呢?如:A={x│x=2k+1},k∈Z是指奇数的集合,此时是k取遍所有整数得到的.那么,有C={x│(x-1)(x-k)=0},k∈R,此时C该是R(当k取遍所有实数时)呢,还是{1}(k=1)或{1,k}(k≠1)(即只针对一个特定的k,分类讨论)?
问题描述:
关于用描述法定义集合的意义
若用描述法来定义一个集合A={x|p,k∈B},其中P是一个包含k的关于x的命题,B是一个说明k取值范围的集合,如p:x=2k+1,B=Z.那么这样定义的集合所包含的元素x,是使k取遍B中元素时每一个k确定的p为真的x都取呢,还是只使某个属于B的特定的k确定的p满足的x,并由此得到许多个依赖于k的A的可能呢?
如:A={x│x=2k+1},k∈Z是指奇数的集合,此时是k取遍所有整数得到的.那么,有
C={x│(x-1)(x-k)=0},k∈R,此时C该是R(当k取遍所有实数时)呢,还是
{1}(k=1)或{1,k}(k≠1)
(即只针对一个特定的k,分类讨论)?
答