(1)对任意实数a,b,求证a^2+3b^2≥2b(a+b) (2)对任意实数ab,求证a^2+b^2-2a-2≥0 (3)已知abc正整数,求证(用均值定理) a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥6abc (a^2+1)(b^2+1)(c^2+1)≥8abc
问题描述:
(1)对任意实数a,b,求证a^2+3b^2≥2b(a+b)
(2)对任意实数ab,求证a^2+b^2-2a-2≥0
(3)已知abc正整数,求证(用均值定理)
a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥6abc
(a^2+1)(b^2+1)(c^2+1)≥8abc
答