由等差数列的定义,要判定一个数列是不是等差数列,只要看它的任意一项减去前一项(即an - an-1 n≥2)是不是一个与n无关的常数就行了。为什么是与n无关的常数就行了?为什么要无关?注:上面这条有字母的代数式是等差数列里的任意一项减去前一项数学表达法。证明它是一个常数就可以了?要用很多个“任意一项减去前一项”来证明吗?还是任意找相邻的两项来减看它是不是常数就可以了?要找多少对来相减呢?一对可以没?说得有点乱,请见谅,
由等差数列的定义,要判定一个数列是不是等差数列,只要看它的任意一项减去前一项(即an - an-1 n≥2)是不是一个与n无关的常数就行了。为什么是与n无关的常数就行了?为什么要无关?
注:上面这条有字母的代数式是等差数列里的任意一项减去前一项数学表达法。
证明它是一个常数就可以了?要用很多个“任意一项减去前一项”来证明吗?还是任意找相邻的两项来减看它是不是常数就可以了?要找多少对来相减呢?一对可以没?
说得有点乱,请见谅,
不用找所有的,只要证明an-an-1=常数即可,n就代表任意常数
因为定义是说常数,所以与“变量”n无关才行
证明的时候 你写多少对都不行,必须是任意一项减去前一项才可以,所以证明的时候就是要
an - a(n-1)当n大于等于2时候恒成立
首先,你要先看清楚等差的定义,任意一项,就意味着这个数列的每一项,二者同等含义,无需用很多个任意一项去证明,只要你证明了任意一项,就证明了所有的了,
等差顾名思义,相差一个固定的值,若假设这个差值跟N有关,而N是一个变量,跟它应该是固定的值矛盾,所以要与N 无关。
证明等差,你只要证明an-an-1 (n>=2)或者an+1 - an (n>=1)等于常数就可以了,
只要是常数就可以,因为n可以代表不同的值,渐渐的学习一段时间你就明白了
首先:严格来讲你说的不正确.这也是很多老师讲错的地方,是一个细节.a(n) - a(n-1) = 同一个常数 d,而不是一个常数数学要求的是严谨.你的这个问题:任意找相邻的两项来减看它是不是常数就可以了?要找多少对来相减呢?...
证明的时候 你写多少对都不行,必须是任意一项减去前一项才可以,所以证明的时候就是要
an - a(n-1)当n大于等于2时候恒成立
你前面的问题不就说了嘛,用它的任意一项减去前一项啊,是任意地找相邻的啊,就不用找很多啊,其实你用一个N代替就相当于是证明了很多了嘛,随便地令N为随便的一个常数啊,就不是证明 了很多个了啊