极坐标方程ρ=2sin(θ-π /4) 表示的曲线是?
问题描述:
极坐标方程ρ=2sin(θ-π /4) 表示的曲线是?
答
ρ=根号(x^2+y^2)
sinθ=y/(根号(x^2+y^2))
cosθ=x/(根号(x^2+y^2))
2sin(θ-π /4) =根号2sinθ+根号2cosθ
根号(x^2+y^2)=根号2*(y-x)/(根号(x^2+y^2))
x^2+y^2=根号2(x-y)
答
ρ=2sin(θ-π/4)
ρ^2=2ρsin(θ-π/4)
x^2 + y^2 = 2ρsinθcosπ/4-2ρcosθsinπ/4
x^2 + y^2 = √2ρsinθ - √2ρcosθ
x^2 + y^2= √2y - √2x
x^2 + √2x + y^2 - √2y =0
x^2 + √2x + 1/2 + y^2 - √2y +1/2 =1
(x+1/√2)^2 + (y-1/√2)^2 = 1
即圆心(-1/√2,1/√2)半径为1的圆
√2:2开平方 π 圆周率
应用公式:ρ^2 = x^2 + y^2
x=ρcosθ y=ρsinθ