概率论.集合A与集合B的交集为空集,则A和B一定不是相互独立事件,对吗,举例说明不太明白
概率论.集合A与集合B的交集为空集,则A和B一定不是相互独立事件,对吗,举例说明
不太明白
这个命题是对的.
如果A,B交集为空,那么A和B绝对就 不是 相互独立.
相互独立的事件之间没有固定的“相交”或者“不相交”的关系,如果两个事件或者集合有了明确的“相交”或者“相交为空”的关系,那么这2个事件就互相影响了,就绝对不是独立的了!
前面的几个回答,都没理解相互独立的意思,相互独立并不是说是否A=B,那叫相等,不是独立.
具体的概念你还要自己看书学
我在这里用通俗的语言简单给你讲一下
独立性的意思是说:
A的发生与否完全不受B的发生与否所影响,同样B的发生与否也完全不受A是否发生影响.
举个例子:
设A=[扔一个硬币2次,正面朝上2次的概率]
B=[扔另一个硬币1次,正面朝上1次的概率]
显然,A=25%,B=50%,A不等于B ,但是这2个事件互相不影响,第一个硬币是正是反,不影响第2个,所以,他们相互独立.
设A=[扔一个硬币1次,正面朝上1次的概率]
B=[扔另一个硬币1次,正面朝上1次的概率]
显然A=B=50%,A=B,但是这2个事件互相不影响,第一个硬币是正是反,不影响第2个,所以,他们相互独立.
以上是独立的意思,千万别和不相等混淆,A与B是否相等,和独立没关系
再看看包含、相交,空集的意思:
如果A被B包含,就是说,A发生的时候,B一定发生了;B发生的时候,A不一定发生
相交:A和B有一部分相交,在相交区域内,A、B同时发生.
命题中所说的相交为空集:
如果事件A和事件B 不相交(也就是相交为空集),那就是说,A和B不存在同时发生的情况.换句话说,A发生,B一定不发生;B发生,A一定不发生.(A和B两者不同时发生)
显然,这种情况下,A的发生与否完全影响着B的发生(A发生了,B就一定不会发生).A和B不是相互独立的.
所以,命题是对的
给你举个例子吧:
扔硬币,假设A=正面向上 B=反面向上
显然,A和B不可能同时发生,交集为空.
如果A发生了,B就肯定不发生;B发生了,A就肯定不发生,所以A和B的发生互相影响,他们不是独立的.可见,交集为空,就一定不独立