|x+y-5|与根号(xy-6)互为相反数,求:根号(x/y)+根号(y/x)的值.
问题描述:
|x+y-5|与根号(xy-6)互为相反数,求:根号(x/y)+根号(y/x)的值.
答
因为|x+y-5|与根号(xy-6)互为相反数,而|x+y-5|≥0,根号(xy-6)≥0,两者相加是0,所以两者都等于0.所以很快就得到x+y=5,xy=6√(x/y)+√(y/x)=(√x)/(√y)+(√y)/(√x)[通份]=(x+y)/(√xy)将x+y=5,xy=6代入得(x+y)...