等差数列{an}中a1=9,a3+a8=0 求通项公式,最好把解法写的详细点,本人不太明白
问题描述:
等差数列{an}中a1=9,a3+a8=0 求通项公式,
最好把解法写的详细点,本人不太明白
答
设公差为d
a3 = a1 +2d
a8 = a1 + 7d
a3+a8 = 2a1 + 9d = 18+9d = 0
d = -2
通项公式 an = 9+(n-1)d = 9-2(n-1) = 11 -2n
答
设公差为d
a1=a1
a2=a1+d
a3=a2+d=a1+2d
.
.
.
an=a1+(n-1)d
a3+a8=a1+2d+a1+7d=0 --> d=-2
an= a1+(n-1)d
= 9+(n-1)(-2)
= 9-2(n-1)
= 11-2n