已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,(1)求a1,a2,a3的值;已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,(1)求a1,a2,a3的值;(2)求数列{an}的通项公式;(3)是否存在正数M使下列不等式:(2^n)▪a1▪a2.an≥M根号(2n+1)▪(2a1-1)▪(2a2-1).2(an-1),对一切n∈N*成立?若存在,求出M的取值范围:若不存在,请说明理由.说明:根号下是(2n+1).其他的都不在根号下.

问题描述:

已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,(1)求a1,a2,a3的值;
已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,
(1)求a1,a2,a3的值;
(2)求数列{an}的通项公式;
(3)是否存在正数M使下列不等式:(2^n)▪a1▪a2.an≥M根号(2n+1)▪(2a1-1)▪(2a2-1).2(an-1),对一切n∈N*成立?若存在,求出M的取值范围:若不存在,请说明理由.
说明:根号下是(2n+1).其他的都不在根号下.

an>0
n=1时
S1=a1=(a1²+a1)/2
∴a1=1
n>=2时
S(n-1)=(a(n-1)²-a(n-1))/2
an=Sn-S(n-1)
∴(an+a(n-1))(an-a(n-1)-1)=0
an>0
∴an-a(n-1)=1
∴{an}是等差数列
an=1+n-1=n
a2=2,a3=3
(3)
(2^n)▪a1▪a2.an≥M√(2n+1)▪(2a1-1)▪(2a2-1).2(an-1)
∴M≤[(2^n)▪a1▪a2.an]/[√(2n+1)▪(2a1-1)▪(2a2-1).2(an-1)]
设f(n)=[(2^n)▪a1▪a2.an]/[√(2n+1)▪(2a1-1)▪(2a2-1).2(an-1)]
f(n+1)=[(2^(n+1)*1*2*3...*n*(n+1)]/[√(2n+3)*(1*3*5*.(2n-1)(2n+1)]
f(n+1)/f(n)
=(2n+2)/[√(2n+1)*√(2n+3)]
=√[(4n^2+8n+4)/(4n^2+8n+3)]
>1
∴f(n)是增函数
∴f(n)>=1=2√3/3
∴0