若4a的平方+9b的平方=13,3b-2a+5=0.则对于正整数n代数式,2a的2n+4次方乘(b的2n+3次方+2分之3乘b的2n+5次方)的值?

问题描述:

若4a的平方+9b的平方=13,3b-2a+5=0.
则对于正整数n代数式,2a的2n+4次方乘(b的2n+3次方+2分之3乘b的2n+5次方)的值?

2a的2n+4次方乘(b的2n+3次方+2分之3乘b的2n+5次方)
2a^(2n+4)*b(2n+3)*(3/2)b(2n+5)
4a^2+9b^=13
3b-2a+5=0
解出方程组的解(1,-1) (3/2,-2/3)
当a=1,b=-1时
2a^(2n+4)*[b^(2n+3)+(3/2)b^(2n+5)]=-5
当a=3/2,,b=-2/3
2a^(2n+4)*[b^(2n+3)+(3/2)b^(2n+5)]
=2a^(2n+4)*[b^(2n+3)(1+(3/2)b^2)]
=2a*a^(2n+3)*b^(2n+3)*[(1+(3/2)b^2)]
=2a*(ab)^(2n+3)*[(1+(3/2)b^2)]
=2(3/2)*(-1)*(5/3)
=-5

若4a的平方+9b的平方=13,3b-2a+5=0。
则有a=1,b= -1
下面你会算了吧,呵呵

4a^2+9b^2=13
3b-2a=-5
(3b-2a)^2=(-5)^2
4a^2-12ab+9b^2=25
13-12ab=25
ab=-1
2a^(2n+4)[b^(2n+3)+3b^(2n+5)/2]
=2a^(2n+4)b^(2n+3)+3a^(2n+4)b^(2n+5)
=2a*[a^(2n+3)b^(2n+3)]+3b[a^(2n+4)b^(2n+4)]
=2a*(ab)^(2n+3)+3b*(ab)^(2n+4)
=2a*(-1)^(2n+3)+3b*(-1)^(2n+4)
因为2n+3是奇数,2n+4是偶数
所以(-1)^(2n+3)=-1,(-1)^(2n+4)=1
所以原式=2a*(-1)+3b*1
=3b-2a=-5

a=1
b=-1
值为-4