za zuo a 设a1,a2...an为正数,是分别用柯西不等式与排列不等式证明ai^2/a2+a2^2/a3+...+an^2/a1>=a1+a2+...+an
问题描述:
za zuo a
设a1,a2...an为正数,是分别用柯西不等式与排列不等式证明ai^2/a2+a2^2/a3+...+an^2/a1>=a1+a2+...+an
答
柯西不等式a1,a2...an为正数(a1^2/a2+a2^2/a3+...+an^2/a1)(a2+a3+...+a1) >=(a1+a2+...+an)^2所以 a1^2/a2+a2^2/a3+...+an^2/a1>=a1+a2+...+an 排列不等式a1,a2...an为正数不妨设对于任意i...