f(x)=log2 (2-x)+log2 (2+x),定义域为(-2,2),指出方程f(x)=|x|的实根个数,并说明理由
问题描述:
f(x)=log2 (2-x)+log2 (2+x),定义域为(-2,2),指出方程f(x)=|x|的实根个数,并说明理由
答
f(x)=log2 (2-x)+log2 (2+x)
=log2(-x^2+4)
由定义域为(-2,2)
知0则log2(-x^2+4)设g(x)=|x|
则f(x)=g(x)时
log2(-x^2+4)=|x|
由图象可知,f(x),g(x)均为偶函数,
又f(x),g(x)在Y轴右侧有一个交点,则f(x),g(x)在Y轴左侧必有另一个交点,
则方程f(x)=|x|有2个实根.