什么是晶体?(高中化学)
什么是晶体?(高中化学)
晶体有三个特征
(1)晶体拥有整齐规则的几何外形。 (2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。 (3)晶体有各向异性的特点:固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。 晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。 非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。如玻璃。外形为无规则形状的固体。
晶体的共性
合成铋单晶
1、长程有序:晶体内部原子在至少微米级范围内的规则排列。 2.均匀性:晶体内部各个部分的宏观性质是相同的。 3.各向异性:晶体中不同的方向上具有不同的物理性质。 4.对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。 5.自限性:晶体具有自发地形成封闭几何多面体的特性。 6.解理性:晶体具有沿某些确定方位的晶面劈裂的性质。 7.最小内能:在相同热力学条件下,晶体与同种物质非晶体固态液态气体相比,其内能最小。 8.晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。 组成晶体的结构微粒(分子、原子、离子、金属)在空间有规则地排列在一定的点上,这些点群有一定的几何形状,叫做晶格。排有结构粒子的那些点叫做晶格的结点。金刚石、石墨、食盐的晶体模型,实际上是它们的晶格模型。 晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。 固体可分为晶体、非晶体和准晶体三大类。 具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。 晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。 晶体按其内部结构可分为七大晶系和14种晶格类型。晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。 晶体
说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。但是,你知道根据其内部构造特点,固体又可分为几类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类。
几何形状
晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。 究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。 但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。 为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。 由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。 我们吃的盐是氯化钠的结晶,味精是谷氨酸钠的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。我们可以这样说:“熠熠闪光的不一定是晶体,朴实无华、不能闪光的未必就不是晶体”。不是吗?每家厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制品也属晶体,就连地上的泥土砂石都是晶体。我们身边的固体物质中,除了常被我们误以为是晶体的玻璃、松香、琥珀、珍珠等之外,几乎都是晶体。晶体离我们并不遥远,它就在我们的日常生活中。 晶体
组成晶体的结构粒子(分子、原子、离子)在三维空间有规则地排列在一定的点上,这些点周期性地构成有一定几何形状的无限格子,叫做晶格。按照晶体的现代点阵理论,构成晶体结构的原子、分子或离子都能抽象为几何学上的点。这些没有大小、没有质量、不可分辨的点在空间排布形成的图形叫做点阵,以此表示晶体中结构粒子的排布规律。构成点阵的点叫做阵点,阵点代表的化学内容叫做结构基元。因此,晶格也可以看成点阵上的点所构成的点群集合。对于一个确定的空间点阵,可以按选择的向量将它划分成很多平行六面体,每个平行六面体叫一个单位,并以对称性高、体积小、含点阵点少的单位为其正当格子。晶格就是由这些格子周期性地无限延伸而成的。空间正当格子只有7种形状(对应于7个晶系),14种型式它们是简单立方、体心立方、面心立方;简单三方;简单六方;简单四方、体心四方;简单正交、底心正交、体心正交、面心正交;简单单斜、底心单斜;简单三斜格子等。晶格的强度由晶格能(或称点阵能)。
类别实例
1立方晶系钻石明矾金铁铅 2正方晶系 锡金红石白钨石 3斜方晶系硫碘 硝酸银 4单斜晶系硼砂蔗糖石膏 5三斜晶系硫酸铜硼酸 6三方(菱形)晶系砷 水晶冰石墨 7六方晶系镁锌 铍镉 钙
晶体是原子、离子或分子按照一定的周期性在空间排列形成在结晶过程中形成具有一定规则的几何外形的固体。晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。 晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和准晶体三大类。具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。 晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,
物质是由原子、分子或离子组成的.当这些微观粒子在三维空间按一定的规则进行排列,形成空间点阵结构时,就形成了晶体.因此,具有空间点阵结构的固体就叫晶体.事实上,绝大多数固体都是晶体.不过,它们又有单晶体和多晶体之分.所谓单晶体,就是由同一空间点阵结构贯穿晶体而成的;而多晶体却没有这种能贯穿整个晶体的结构,它是由许多单晶体以随机的取向结合起来的.例如,飞落到地球上的陨石就是多晶体,其主要成份是由长石等矿物晶体组成的.而食盐的主要成份氯化钠(NaCl)却是一种常见的单晶体,它是由钠离子(Na+)和氯离子(Cl-)按一定规则排列的立方体所组成,从大范围(即整个晶体)来看,这种排列始终是有规则的.因此,我们平常所看到的食盐颗粒都是小立方体.又如钻石,它是由碳原子在大范围内按一定的规则排列而成的晶体,人们常常在它的外表面加工出许多小面,使它变成多面体,由于它具有很高的折射率,又是透明的,所以,在阳光照射下,它对光线产生强烈的反射和折射,发出闪烁的光辉.值得注意的是,在晶体中,这样晶莹透明的有很多,但是,并不是所有透明的固体都是晶体,如玻璃就不是晶体.为什么呢?这是因为,组成玻璃的微观粒子只是在一个很小的范围内作有规则的排列,而从大范围来看,它们的排列是不规则的,因此,玻璃不是晶体.
自然界中形成的晶体叫天然晶体,而人们利用各种方法生长出来的晶体则叫人工晶体.目前,人们不仅能生长出自然界中已有的晶体,还能制造出许多自然界中没有的晶体.人们发现,晶体的颜色五彩纷呈,从红、橙、黄、绿、蓝、靛、紫到各种混合颜色,简直应有尽有,令人目不暇接.不过,更加令人惊奇的是,晶体不仅美丽,还有许多重要的用途呢!
比如说激光晶体.这是一种非常重要的晶体,它吸收足够的能量之后能发出一种特殊的强光,我们叫它"激光",所以这种晶体叫做激光晶体.目前,人们已研制出数百种激光晶体.其中,红宝石晶体是最引人注目的一种.这是因为,有一位美国科学家Maiman,曾在1960年利用这种晶体获得了一项举世瞩目的重大科学成就--研制出世界上第一台激光器.今天,这些激光晶体在军事技术、宇宙探索、医学、化学等众多领域内都已得到了广泛的应用.例如,激光电视、激光彩色立体电影、激光雷达、激光手术刀等都是激光晶体在这些领域内成功应用的结果.又如水中通信,由于海水对红光产生强烈的吸收,而对蓝绿光则吸收得较少,因此,蓝绿光在海水中能够传播较远的距离.利用这一特性,人们就可以利用激光晶体产生的蓝绿光进行水中通信和探索.
另一种重要的晶体恐怕要属半导体晶体了.这是因为,由半导体晶体硅和锗做成的各种晶体管,取代了原来的电子管,在无线电子工业上有着极其广泛的应用,由于它们的出现,电子产品的体积大大减少,成本大幅度降低.可以说,没有半导体晶体,就没有无线电子工业的飞速发展,我们今天就不可能拥有随身听、超薄电视和笔记本电脑等体积小巧、携带方便的电子产品了.此外,光纤通讯技术也离不开半导体晶体.利用这种晶体做光源,人们就能在一根头发丝般的光导纤维中传递几十万路电话或几千路电视,从而大大提高了信息传递的数量和质量.试想,如果没有这些半导体晶体,我们怎能看到高清晰度的电视,又怎能清楚地听到从遥远的大洋彼岸传来的亲人的声音呢?
不过,在众多性能之中,最奇妙的当属光折变效应了.具有这种效应的晶体叫光折变晶体.那么,这是怎样一种效应呢?原来,当外界微弱的光照到这种晶体上时,晶体的折射率会发生变化,形成极为特殊的折射率光栅.凭借这种光栅,晶体便成为神通广大的"齐天大圣",向人们演示出种种不可思议的奇妙现象:它可以在3cm3的体积中存储5000幅不同的图像,并可以迅速显示其中任意一幅;它可以把微弱的图像亮度增强1000倍;它可以精密地探测出小得只有10-7米的距离改变;它可以使畸变得无法辨认的图像清晰如初;它可以滤去静止不变的图像,专门跟踪刚发生的图像改变;它还可以模拟人脑的联想思维能力!因此,这种奇妙的晶体一经发现,便引起了人们的极大兴趣.目前,它已发展成一种新颖的功能晶体,向人们展示着良好的应用前景.
此外,还有许多晶体,如电光晶体、声光晶体、压电晶体、热释电晶体、磁性晶体、超硬晶体等,它们在不同的技术领域中也起着重要的作用,在此就不一一列举了.不过,值得一提的是,近年来,随着光子晶体和纳米晶体的出现和发展,掀起了微观晶体的研究热潮,使人类认识达到了一个新的层次.可以相信,不久的将来我们将拥有更多、更奇妙的晶体.