999……9×999……9+1999……9的末尾共有( )个0999……9×999……9+1999……9的末尾共有( )个01997个9 1997个9 1997个9
问题描述:
999……9×999……9+1999……9的末尾共有( )个0
999……9×999……9+1999……9的末尾共有( )个0
1997个9 1997个9 1997个9
答
(9999……9)²+2×9999……9+1
=(9999……9+1)²
=10000……0
有2n个0
答
1997^个0
(999.....9+1-1)x(999.....+1-1)+19999....9=(10000........0-1)x(10000......-1)^+1999.....9=(1000....-1)^+1999.....1=1000.....0^-2x1000.....0+1+1999.....9=1000.......0^
所以有1997^个0
答
999……9×999……9+1999……91997个9 1997个9 1997个9=999……9×(1000……0-1)+1999……91997个9 1997个0 1997个9=999……9000……0-999.999+1999……9 1997个9,1997个0 1997个9 ...
答
什么意思?