ln[根号(x^2+y^2)] =arctany/x 求dy1/2*ln(x^2+y^2)=arctany/x两边对x求导,得1/2*1/(x^2+y^2)*(2x+2y*y')=1/[1+(y/x)^2]*(y'*x-y)/x^2化简得y'=(x+y)/(x-y)则dy=(x+y)/(x-y)*dx请问两边对求导是怎么得出1/2*1/(x^2+y^2)*(2x+2y*y')=1/[1+(y/x)^2]*(y'*x-y)/x^2这个的?还有这个我怎么看不太懂啊?谁用数学软件如实的写出来就大谢了.还有化解又是怎么得来的,本人小白.请细致一些,不然看的我有压力啊

问题描述:

ln[根号(x^2+y^2)] =arctany/x 求dy
1/2*ln(x^2+y^2)=arctany/x两边对x求导,得
1/2*1/(x^2+y^2)*(2x+2y*y')=1/[1+(y/x)^2]*(y'*x-y)/x^2
化简得
y'=(x+y)/(x-y)
则dy=(x+y)/(x-y)*dx
请问两边对求导是怎么得出1/2*1/(x^2+y^2)*(2x+2y*y')=1/[1+(y/x)^2]*(y'*x-y)/x^2这个的?
还有这个我怎么看不太懂啊?
谁用数学软件如实的写出来就大谢了.
还有化解又是怎么得来的,本人小白.
请细致一些,不然看的我有压力啊