1》show that the identity :tanAcscA=tanAsinA+cosA is ture for π/3 2》prove the following:sin{3π/2 - θ}=-cosθ

问题描述:

1》show that the identity :tanAcscA=tanAsinA+cosA is ture for π/3
2》prove the following:sin{3π/2 - θ}=-cosθ

1)tanA=tan(π/3)=3^0.5 cscA=csc(π/3)=2/3^0.5 sinA=sin(π/3)=3^0.5/2 cosA=cos(π/3)=1/2
tanAcscA=3^0.5*2/3^0.5 =2 tanAsinA+cosA=3^0.5*3^0.5/2 +1/2=2 so the identity is true
2)sin{3π/2 - θ}=sin(3π/2)cos θ-cos(3π/2)sinθ=-cosθ
正确!

1)tanA=tan(π/3)=3^0.5 cscA=csc(π/3)=2/3^0.5 sinA=sin(π/3)=3^0.5/2 cosA=cos(π/3)=1/2
tanAcscA=3^0.5*2/3^0.5 =2 tanAsinA+cosA=3^0.5*3^0.5/2 +1/2=2 so the identity is true
2)sin{3π/2 - θ}=sin(3π/2)cos θ-cos(3π/2)sinθ=-cosθ