向量a,b满足|a|=2 ,|b|=1,其夹角为120,对于任意向量m,总有(m-a)(m-b)=0,则|m|的最大值与最小值之差为?
问题描述:
向量a,b满足|a|=2 ,|b|=1,其夹角为120,对于任意向量m,总有(m-a)(m-b)=0,则|m|的最大值与最小值之差为?
答
向量a,b满足|a|=2 ,|b|=1,其夹角为120,对于任意向量m,总有(m-a)(m-b)=0,则|m|的最大值与最小值之差为?