已知多项式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3是二次多项式,则a2+b2=_.

问题描述:

已知多项式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3是二次多项式,则a2+b2=______.

∵2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3=(2a-b-1)x4+(5a-13+b)x3-13x2+2x+2021,
又∵此多项式为二次多项式,

2a−b−1=0
5a−13+b=0

解得
a=2
b=3

所以a2+b2=22+32=13.
故答案为13.