设函数f(x)=2sin(π/2x+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)则|x1-x2|的最小值为?
问题描述:
设函数f(x)=2sin(π/2x+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)
则|x1-x2|的最小值为?
答
设函数f(x)=2sin(π/2x+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)
则|x1-x2|的最小值为?