(cscX-cotX)(secX+1) 化简答案是tanX 求细节

问题描述:

(cscX-cotX)(secX+1) 化简答案是tanX 求细节

(cscX-cotX)(secX+1)=(1/sinX-cosx/sinx)(1/cosx+1)
={(1-cosx)/sinx}{(1+cosx)/cosx}
=(1-(cosx)^2)/(sinxcosx)
=(sinx)^2/sinxcosx
=tanX

原式=(1/sinx-cosx/sinx)(1/cosx+1)
=[(1-cosx)/sinx][(1+cosx)/cosx]
=[(1-cosx)(1+cosx)]/(sinxcosx)
=(1-cos²x)/(sinxcosx)
=sin²x/(sinxcosx)
=sinx/cosx
=tanx