在三角形OAB中,P为AB边上的一点,且向量BP=3向量PA,向量OP=x*OA+y*OB(1)求x、y的值;(2)若|OA|=4,|OB|=2,且向量OA与OB的夹角为60°,求向量OP*AB的值.

问题描述:

在三角形OAB中,P为AB边上的一点,且向量BP=3向量PA,向量OP=x*OA+y*OB
(1)求x、y的值;(2)若|OA|=4,|OB|=2,且向量OA与OB的夹角为60°,求向量OP*AB的值.

(1)
BP=3PA
OP-OB = 3(OA-OP)
4OP = 3OA+OB
OP = (3/4)OA + (1/4)OB
=> x = 3/4 and y =1/4
(2)
OP.AB
=((3/4)OA + (1/4)OB).(OB-OA)
= -(3/4)|OA|^2 +(1/4)|OB|^2+(1/2)|OA||OB|cos60°
= -12+1+2
=-9