sinx=3/5,x∈(π/2,π),tany=1/2,求tan(x+y),tan(tanx-y)值如题,需要过程,有追加最后一个是求tan(x-y),题目错了,谢谢
问题描述:
sinx=3/5,x∈(π/2,π),tany=1/2,求tan(x+y),tan(tanx-y)值
如题,需要过程,有追加
最后一个是求tan(x-y),题目错了,谢谢
答
cosx=4/5 tanx=3/4
tan(x+y)=(tanx+tany)/(1-tanx*tany)=(3/4+1/2)/(1-(3/4)*(1/2))=2
tan(x-y)=(tanx-tany)/(1+tanx*tany)=(3/4-1/2)/(1+(3/4)*(1/2))=2/11
答
sinx=3/5 ,cosx=-4/5 ,tanx=-3/4tan(x+y)=(tanx+tany)/(1-tanxtanu)=(-3/4+1/2)/(1+3/8)=-1/4*8/11=-2/11tan(tanx-y)=[tan(-3/4)-1/2]/[1+1/2tan(-3/4)]=-0.5131/0.9935=-0.5135