如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

问题描述:

如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

∵BD为正方形ABCD的对角线,
∴∠1=∠3,∠2=∠4,
∴∠EMC=180°-∠1-∠3=180°-2∠1.
同理∠FNC=180°-2∠2.
∴∠EMC+∠FNC=360°-2(∠1+∠2).
∵∠MCN=180°-(∠1+∠2),
∴∠EMC+∠FNC总与2∠MCN相等.
因此∠EMC+∠FNC始终为定角,这定角为∠MCN的2倍.
答案解析:因为BD为正方形ABCD的对角线,则∠1=∠3,∠2=∠4,用∠1和∠2表示∠MCN以及∠EMC+∠FNC.
考试点:正方形的性质.
知识点:本题考查了正方形的性质,正确用∠1和∠2表示∠MCN以及∠EMC+∠FNC是关键.