1.集A={x|kx+(π/3)≤x<kx+(π/2),k∈z},B={x|4-(x^2)≥0},则A∩B=?2.a是△ABC的内角,函数f(x)=(x^2)cosa-4xsina+6对一切x∈R.恒有f(x)>0,求a的取值范围3.求函数y=lg(tana-√3)/[√(x+10)*√(10-x)]的定义域
问题描述:
1.集A={x|kx+(π/3)≤x<kx+(π/2),k∈z},B={x|4-(x^2)≥0},则A∩B=?
2.a是△ABC的内角,函数f(x)=(x^2)cosa-4xsina+6对一切x∈R.恒有
f(x)>0,求a的取值范围
3.求函数y=lg(tana-√3)/[√(x+10)*√(10-x)]的定义域
答
B:
4-(x^2)≥0
4≥x^2
x[-2,2]
A:
kx+(π/3)≤x<kx+(π/2)
画到数轴上看公共部分
f(x)=(x^2)cosa-4xsina+6>0
cosa>0 b^2-4ac0
10-x>0
√(x+10)*√(10-x)不等于0