证明指数分布的无记忆性,即若随机变量X服从指数分布,则对任意正实数s和t有:P{X>s+t | X>s}=P{X>t}
问题描述:
证明指数分布的无记忆性,即若随机变量X服从指数分布,则对任意正实数s和t有:P{X>s+t | X>s}=P{X>t}
答
不妨直接利用指数分布的分布函数计算(利用其密度函数容易推得),即
当x≥0时,F(x)=1-e^(-λ*x)
当xs+t|X>t}= P{X>s+t,X>t}/ P{ X>t }
= P{X>s+t}/ P{ X>t }
= [1- P{X≤s+t}]/[1-P{ X≤t }]
= [1-F(s+t)]/ [1-F(t)]
= e^[-λ*(s+t)]/ e^(-λ*t)
= e^(-λ*s)
而P{X>s}=1-P{ X≤s }=1-F(s)= e^(-λ*s)
因此P{X>s+t|X>t}= P{X>s}